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Abstract

This evidence review addresses whether type 2 diabetes genomic risk panels improve health 

outcomes (e.g., reduce rates of developing type 2 diabetes) in low- or high-risk adults; two clinical 

scenarios promulgated by commercial companies offering such testing. Evidence for the analytic 

validity of available genomic profiles was inadequate. Clinical validity ranged from inadequate to 

convincing for 30 variants identified on five type 2 diabetes genomic panels and by genome-wide 

association studies. Eight common variants were identified for general population use; evidence 

credibility based on published criteria was strong for two variants, moderate for two variants, and 

weak for four variants. TCF7L2 had the largest per-allele odds ratio of 1.39 (95% confidence 

interval 1.33–1.46). Models combining the best four, best eight, and all 30 variants used summary 

effect sizes, reported genotype frequencies, and assumed independent effects. Areas under the 

curve were 0.547, 0.551, and 0.570, respectively. In high-risk populations, per-allele odds ratios 

for TCF7L2 alone were similar to those of the general population. TCF7L2, in combination with 

other variants, yielded minimal improvement in risk reclassification. Evidence on TCF7L2 clinical 

validity was adequate. Three studies addressed the clinical utility of intervention effectiveness, 

stratified by TCF7L2 genotype; none found significant interactions. Clinical utility evidence was 

inadequate. In addition to analytic validity and clinical utility knowledge gaps, additional gaps 
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were identified regarding how to inform, produce, and evaluate models combining multiple 

variants.
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INTRODUCTION

Diabetes mellitus refers to a group of metabolic diseases that are characterized by chronic 

elevations in plasma glucose. Up to 95% of all diabetes is considered type 2 diabetes (T2D), 

which was previously known as “adult-onset” or “non–insulin-dependent diabetes.” The 

metabolic mechanisms for T2D include insulin resistance, impaired insulin secretion, and 

increased hepatic glucose production. Complications can include nephropathy, neuropathy, 

retinopathy, periodontal disease, and accelerated development of cardiovascular disease. 

Approximately 1.9 million people aged 20 years or older were newly diagnosed with 

diabetes in 2010 in the United States.1 T2D is becoming more common in the United States 

and throughout many regions of the world. The T2D prevalence in youths aged 10 years and 

older is 8.5 per 100,000, whereas the prevalence is 0.4 per 100,000 in youths younger than 

10 years.1 The prevalence is even higher among adults aged 65 years and older, with 10.9 

million, or 26.9%, of all people in this age group being affected.1 However, the Centers for 

Disease Control and Prevention estimates as many as 27% of individuals with T2D are 

undiagnosed. Factors such as an aging population and rising rates of obesity are expected to 

further increase the prevalence.

The prevalence of T2D varies by race and ethnicity, with higher rates among African 

Americans (11.4%), Hispanic/Latino Americans (8.2%), Native Americans (8.2% among 

Alaska Natives, 27.8% among certain Native American tribes from the Southwest, and up to 

50% among Pima Indians and some Asian-American and Pacific Islander groups). 

Randomized trials have demonstrated that changing lifestyle factors (e.g., weight loss, 

improved diet, and increased physical activity) can help prevent or delay the development of 

diabetes.2–9

A family history of diabetes is a major risk factor for the disease and is often included in 

tools designed to quantify the risk of diabetes,10 with odds ratios (ORs) of two to six, if one 

or more first-degree relatives have been diagnosed with T2D.11 A long-term study reported 

that the cumulative prevalence of T2D at 80 years of age is approximately 3.5 times higher 

(38% vs. 11%) for individuals with a first-degree relative diagnosed with T2D as compared 

with individuals without any relatives diagnosed with T2D.12

Several commercial and noncommercial entities are now offering diabetes risk testing alone 

or as a part of a panel involving risk profiling for chronic diseases. If these gene panels were 

to demonstrate the capacity of identify a subgroup with important increases in the risk of 

developing diabetes, it might be possible to implement targeted prevention strategies that 

might be too invasive or too resource intensive to be offered to a general population. Such 

testing and targeted interventions have the potential to reduce the burden of disease.
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The Evaluation of Genomic Applications in Practice and Prevention Working Group (EWG) 

was established in 2005 to support the development of a systematic process for assessing the 

available evidence for rapidly emerging genetic tests for clinical practice. This independent, 

multidisciplinary panel selected this topic to commission an evidence report to review 

validity and utility and highlight critical knowledge gaps, in order to provide guidance on 

appropriate use of the available genetic tests in specific clinical scenarios. T2D risk panels 

were selected for evaluation by Genomic Applications in Practice and Prevention because of 

the prevalence and burden of T2D. Testing is offered through both clinical and direct-to-

consumer models, each with unique considerations, and for two clinical scenarios. 

Estimating the risk of T2D on the basis of variants in multiple genes, individually and in 

combination, challenges risk assessment and Genomic Applications in Practice and 

Prevention evidence review methods. The analytic validity (technical test performance), 

clinical validity (the strength of association that determines the test’s ability to accurately 

and reliably identify or predict the disorder of interest), and clinical utility (balance of 

benefits and harms when the test is used to influence patient management) are systematically 

reviewed.13

The EWG chose to examine test performance in two separate clinical scenarios that have 

been promulgated by those offering clinical testing. The first was a claim that a gene panel 

consisting of multiple markers could identify adults from the general population who would 

be at high risk of developing T2D. These individuals could then be offered targeted 

interventions to reduce the likelihood of developing T2D in the future. The second scenario 

involved testing adults who had already been identified as being at high risk of developing 

T2D in the near future. At the time the review was commissioned, claims for this scenario 

involve testing for only one gene (TCF7L2). The aim of the review is not to provide a 

comprehensive review of all potential genomic markers for T2D. According to Phenopedia 

(www.cdc.gov/genomics/hugenet/hugenavigator.htm), there are 3,267 genes already studied 

in relation to T2D, with 208 meta-analyses and 106 genome-wide association (GWA) 

studies, with several hundred publications added per year. Rather, this review focuses on 

what T2D panels are clinically available and determine through an overview of additional 

markers whether it is reasonable to assume that important advances in the clinical validity of 

these panels are expected.

METHODS

Overview

The targeted evidence-based review process used to identify, review, analyze, evaluate, and 

summarize the evidence is briefly presented here, but an in-depth presentation of EWG 

methods has been published.13 A consultant from Women & Infants Hospital’s Department 

of Pathology and Laboratory Medicine (G.E.P.) with experience in evidence review of 

genetic tests was contracted by the Office of Public Health Genomics at the Centers for 

Disease Control and Prevention to assist in the targeted review by the three members of that 

office (M.P.D., S.M., and M.M.). Guidance was provided by a technical expert panel, whose 

members are listed in the Acknowledgments section.
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An analytic framework and key questions for two clinical scenarios (Table 1, Figure 1) were 

developed by the EWG with support from Genomic Applications in Practice and Prevention 

staff and refined through discussion at technical expert panel calls and EWG meetings. The 

review not only focuses on clinical validity but also addresses the limited information 

available on the platforms used for testing (analytic validity) and potential evidence for 

clinical utility both in clinical practice and in direct-to-consumer settings.

Standard methods were used, including systematic searches of published literature, limited 

identification of gray literature, use of inclusion/exclusion criteria, abstraction of data, meta-

analysis, assessment of individual study quality, and grading of overall strength of 

evidence.13 Details on these methods as applied to this study are provided in the relevant 

sections below. In reviewing the available evidence, questions from the ACCE (Analytic 

validity, Clinical validity, Clinical utility, and Ethical, legal and social implications) review 

framework were often used to identify and organize information.14

Analytic validity

Targeted PubMed15 searches were performed for the alleles/single-nucleotide 

polymorphisms (SNPs) and specific terms with the expectation of identifying published 

papers reporting on the analytic validity of methods specific to these genomic panels. For 

example, the PubMed search for TCF7L2 was as follows: “TCF7L2 OR TCF7L2 

genotyping” AND “analytic validity OR clinical test.” The same search was performed for 

each of the variants listed in Table 2. Gray literature searches (e.g., company and genetic 

testing websites) were also conducted to collect any available information on laboratories 

offering testing for these markers and the methodologies used.

Clinical validity

To increase efficiency, the review process was limited in the following ways: (i) inclusion of 

only published studies that reported T2D as the primary outcome, (ii) restriction of 

examined genes/polymorphisms to those included in T2D panels available in the United 

States in August 2010, and (iii) use of existing meta-analyses, when possible. Existing meta-

analyses were considered acceptable if they were published in the past several years, 

reported summary effect size, included a formal analysis of heterogeneity, and examined the 

potential for publication bias. Searches of the published literature were conducted using 

HuGE Navigator v2.0.16,17 We have shown in a previous targeted review that this is a more 

specific search strategy that maintains sensitivity for identifying appropriate articles for 

review equivalent to PubMed.18 Specific search strategies for each gene are contained in 

Supplementary Appendix A online. Reference lists of retrieved publications were also 

examined to identify relevant studies. Searches began in August 2010 and were performed 

through November 2010. The search was rerun in April 2012 to identify recent publications. 

One investigator (M.M., M.P.D, or S.M.) had primary responsibility of study selection and 

information extraction for each gene, and results were reviewed by another (usually G.E.P.). 

Discrepancies were resolved by discussion.

To be included, the study (or meta-analysis) needed to be in English and include information 

about individuals of European descent (Caucasian). Articles with only non-European 
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populations were excluded because the tests included in the review were for European 

descent populations. The primary outcome of T2D was defined in multiple ways: (i) fasting 

blood glucose level >126 mg/dl on two occasions, (ii) hemoglobin A1c test level of ≥6.5%, 

and (iii) oral glucose tolerance test level >200 mg/dl after 2 h.19 In clinical scenario 1 

(testing in the general population), the presence or absence of T2D risk factors is not a 

consideration. In clinical scenario 2 (testing in high-risk individuals), each person 

considered for testing must also have traditional risk factor(s) (e.g., obesity, impaired 

glucose tolerance). For clinical scenario 1, sufficient data needed to be present to express the 

effect size as an OR with confidence interval (CI). For clinical scenario 2, sufficient data to 

quantify the follow-up time period were required.

Summary ORs and corresponding 95% CIs were derived using a random effects model, 

either from the original source (published meta-analysis), from a reanalysis of the reported 

data, or from a new literature summary (Comprehensive Meta-Analysis, Version 2; 

Englewood, NJ). The preferred summary effect size was an allele-specific OR, with the 

largest genotypic group used as the referent. When possible, heterogeneity was expressed 

using the I2 statistic20 for ease of interpretation and comparison between studies.

The genes included on the genomic panel for clinical scenario 1 were addressed in three 

tiers. Tier 1 included the four markers found on an early 2010 Google search for “Type 2 

Diabetes Risk Tests.” That search identified only four gene panels (TCF7L2, CDKAL1, 

CDKN2A/B, and PPARG). These four markers were included on all T2D panels reviewed; a 

full analysis was planned for these genes. Tier 2 included four more genes (HHEX, 

SLC30A8, KCNJ11, and WFS1) that were found to have been added to most panels; these 

were also subject to complete review. Tier 3 included all remaining gene markers that were 

identified on only one panel or that were identified as part of an overview of GWA studies. 

These were subjected to a less stringent analysis that involved calculating a summary OR 

based only on GWA studies of T2D.

An evaluation guideline to assess the cumulative evidence provided by genetic association 

studies was published in 2008.21 These “Venice criteria” focused on amount of evidence, 

replication of evidence, and protection from bias. Each criterion is assigned a grade of “A,” 

“B,” or “C.” The amount of evidence, for example, would receive an “A” if >1,000 cases/

controls with the least common genotype were included in computing the effect size 

estimate, “B” if there were 100–1,000 study subjects, and “C” if <100. As suggested in this 

grading system,21 epidemiological evidence for a significant association was rated as 

“strong” if the meta-analysis received three A grades, “moderate” if it received any B grade 

but not any C grade, and “weak” if it received a C grade in any of the three criteria. These 

criteria may not be as relevant for assessing evidence from large GWA studies.

For clinical scenario 1, it was considered unlikely that any data set would be able to 

adequately assess the independence of multiple gene disease associations. As a way to set a 

reasonable upper limit, we chose a multiplicative model that assumes each gene marker to 

be an independent predictor of T2D risk.18 Before multiplying a set of ORs, we adjusted 

them so that there was no overall impact on the population prevalence of T2D risk.22
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The methods used to estimate the overall clinical validity of genomic panels using multiple 

markers has been described previously.18 Briefly, a Monte Carlo simulation23 was used to 

estimate the distribution of genotypes in individuals with and without T2D using the 

cumulative allele-specific OR and the risk allele frequency derived from the literature 

review. Genomic markers were assumed to be independent, and each OR was multiplied to 

compute the cumulative OR for each individual modeled. Before modeling, the ORs were 

adjusted such that there was no effect on the prevalence of the disorder. The resulting 

distributions of cumulative ORs were divided into 20 equal categories (on the logarithmic 

scale) from 0.1 to 10.

The common name for each gene included in a commercially available T2D test was 

searched using the Genopedia option in the HUGE Navigator24 for type 2 diabetes to 

identify meta-analysis of published GWA study findings. If a meta-analysis of GWA studies 

was not available, the original GWA studies reporting the association for that gene’s 

association with T2D in people of European descent was used. Additional genes not 

included in commercially available tests were included when results from GWA studies 

meta-analysis or original GWA studies were available. A table listing all of the SNPs in 

commercially available tests and select GWA studies with variants identified as of August 

2011 was populated with the risk allele, allele frequency, measure of association (OR), and 

estimates of variance (95% CI). Since August 2011, nine additional variants (CENTD2, 1.14 

(1.11–1.18); HMGA2, 1.08 (1.04–1.12); IRS1 1.10 (1.08–1.13); KLF14, 1.06 (1.03–1.09); 

PRC1, 1.06 (1.03–1.08); PROX1, 1.07 (1.05–1.09); TP53INP1, 1.05 (1.03–1.08); ZBED3, 

1.07 (1.04–1.10); and ZFAND6*, 1.05 (1.03–1.08)) identified from the Voight and Dupuis 

GWA studies were added to the deCodeMe test, and two additional previously identified 

variants (MTNR1B and KCNQ1) were added to the 23andMe test.25,26 Overall, the ORs 

ranged from 1.06 to 1.14 for these nine new variants. The addition of these variants to 

existing test panels and modeling would not change the final outcomes. Because the aim was 

more “horizon scanning” than definitively determining the ORs and allele frequency, we 

chose not to perform an exhaustive review of these later markers.

Clinical utility

A full systematic review of the entire literature on the clinical utility of any genomic 

markers/panels was not undertaken. Rather, targeted PubMed searches18 were focused on 

identifying studies reporting on the potential clinical utility only of genetic testing for T2D 

among the general population and among the defined high-risk population for each clinical 

scenario. Specific PubMed search strings were “type 2 diabetes” AND “gene intervention 

OR gene interaction” AND “utility OR outcomes.” Studies that reported gene intervention 

or interaction among the genetic variants that reported clinical outcomes (e.g., increase or 

decrease of T2D development, increase/ decrease in T2D mortality, change in fasting blood 

glucose) for T2D included in this report are listed in Supplementary Appendix B online. In 

general, intermediate outcomes without validation to a clinical outcome (such as reduction 

in weight) were not included. The exception was the validated clinical outcome of reducing 

the intermediate measure of plasma glucose levels.27,28 Data from the final list of included 

studies were abstracted into evidence tables including genetic variant, outcome measured, 

population, and treatment effects stratified by genetic variant and intervention. Articles from 
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the clinical validity review were also reviewed for information related to clinical utility. This 

review was also updated in April 2012.

RESULTS

Genomic panels for T2D risk

The existing genomic panels for T2D risk prediction that are available in the United States 

were identified as part of a routine horizon scanning process by staff of the Office of Public 

Health Genomics.29 Such tests were available through a health-care provider (Baylor) or 

through a direct-to-consumer offer (23andMe, DeCodeMe, DeCode T2, and Navigenics). 

Table 2 lists the five genomic test panels that met these criteria along with the 27 genetic 

markers included on those panels and eight additional markers found in GWA studies 

through additional horizon scanning. The deCODE T2 (four markers) and the deCODE Me 

(21 markers originally, currently 30) tests are offered by deCODE genetics (Reykjavik, 

Iceland). 23andMe (9 originally, currently 11; Mountain View, CA), Navigenics (Foster 

City, CA), and Baylor College of Medicine (Houston, TX) offer interpretations based on 9, 

18, and 7 genomic markers, respectively. Only the deCODE T2 and Baylor tests focus solely 

on T2D. The other tests are part of a larger SNP array for which an analysis of T2D markers 

is included as part of interpretations for multiple complex disorders (e.g., cardiovascular 

disease). The top four rows of Table 2 show markers that are included in nearly all panels 

and have been offered for several years. The next four rows show genes that have been more 

recently included on most of the identified genomic panels (tier 2). In the next 27 rows are 

the less commonly included markers used in genomic panels (tier 3); 14 of them are 

included on only one genomic panel. For completeness, the bottom of the table includes 

eight additional markers identified through a single summary of three GWA studies of 

T2D.30–32 Several existing panels have increased in size over time, and these are also 

potential candidates for inclusion.

Analytic validity

PubMed searches for each of the genes on the genomic panels (e.g., as “TCF7L2” or 

“TCF7L2 genotyping”) and specific terms (e.g., “analytic validity” and “clinical test”) 

identified no articles that provided relevant data on analytic validity. The testing methods 

used in the research studies reviewed for clinical validity were not considered relevant 

because they did not include method comparisons and were often not representative of 

clinical practice. Most importantly, websites from the five companies offering gene/genomic 

panels related to T2D were reviewed for information related to analytic validity, but no such 

information was found.

No US laboratories were found in the GeneTests33 database offering testing for any of the 

genes found in the genomic panels in the general population for T2D (clinical scenario 1) or 

for TCF7L2 and T2D in the high-risk population (clinical scenario 2). In contrast, these 

panels are part of a whole-exome/whole-genome scan that is interpreted for prediction/risk 

for several diseases. Two panels (DeCODE T2 and Baylor College of Medicine)34 are 

specifically for T2D risk prediction in the general population. No external proficiency 

testing program (e.g., American College of Medical Genetics/College of American 
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Pathology) or formal interlaboratory comparison program was found for these panels or for 

the genes in these panels.35 Publications providing relevant information on the analytic 

validity of testing for these genes were not identified.

Relevant genotyping methodologies

The literature on allele/SNP genotyping described laboratory-developed tests and a large 

number of commercially available reagents and platforms.36,37 In general, genotyping 

methods have involved discrimination of alleles by primer extension, hybridization, ligation 

or enzymatic cleavage, and detection using fluorescence, mass, gel electrophoresis, or 

chemiluminescence.36 Mistaken alleles, allelic dropout (i.e., amplification of only one of 

two alleles in a heterozygous individual), and other genotyping errors can result from a 

number of causes. These include interaction with flanking DNA sequences, low quality/

quantity of DNA in samples, laboratory problems related to reagents/protocols/equipment, 

and human error (e.g., sample mislabeling or contamination and data entry and interpretation 

mistakes). Questions remain about causes and rates of genotyping errors in newer 

technologies (e.g., multiplex assays, chips, and SNP arrays) used in routine clinical practice 

and their potential impact on patient results.38

Clinical validity

Literature searching—We used HuGE Navigator to search for gene/disease association 

studies for each gene of interest found in Table 2. The results of literature searches and 

review can be found in detail for each gene in Supplementary Appendix A online. No new 

publications were identified from the most recent search.

Clinical scenario 1: association of genomic markers with T2D—Table 2 provides 

a summary of evidence for the association of individual genes/variants and T2D. The gene 

abbreviation, genomic panel, and the SNP’s identifying RefSNP (rs) number are provided, 

along with the “risk” allele frequency. It should be noted that the risk allele used in all of 

these panels is not necessarily causative. Rather, it is most likely a marker, which may help 

to explain the relatively low ORs obtained. Where determined, the credibility of the 

evidence (Venice criteria) and associated grades are provided. In the last column, the OR 

and 95% CI are shown. For example, the first row summarizes the information for the 

TCF7L2 gene SNP rs7903146. The risk allele (T) frequency is 29% (i.e., 8% of the 

population will carry two copies (TT), 42% one copy (CT), and the remaining 50% no 

copies of the risk allele (CC)). The cumulative credibility of evidence is “strong”, with three 

“A” grades for the amount and replication of data and the protection from bias. The 

consensus per-allele OR is 1.39 (95% CI: 1.33–1.46). If those individuals with no risk 

alleles were used as the referent category, then TCF7L2 heterozygous individuals would be 

assigned an OR of 1.39. Those with two risk alleles would have an OR of 1.93 (1.39*1.39). 

In the row summarizing results of the HHEX gene marker, several meta-analyses pointed out 

the strong association between study sample size and moderate effect size (smaller studies 

having larger effects), but no attempt was made to grade or account for the potential of 

publication bias due to the finding of high heterogeneity (replication grade of “C”). A more 

detailed description of the literature search, how the risk allele frequencies were defined, 

included studies, tests of heterogeneity, and evaluation of publication bias for each of the 
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combinations listed in Table 2 are all included in Supplementary Appendix B online. 

Among the eight commonly tested genes evaluated by the Venice criteria, two had strong 

credibility (TCF7L2 and CDKN2A), two (CDKAL1 and PPARG) were graded as moderate, 

and four (HHEX, SLC308A, WFS1, and KCNJ11) were graded as having weak credibility. 

The per-allele OR ranged from 0.86 to 1.39. In one instance (PPARG), the risk allele 

frequency is >50%, indicating that the “risk” allele is actually protective and associated with 

reduced, rather than increased, risk for T2D.

Among the 19 additional markers included in Table 2 that were also included on a genomic 

panel, the per-allele ORs ranged from 1.06 to 1.18. Five of these 19 markers had no OR 

reported, as no published information was found in any search of PubMed or HuGE 

Navigator. Among the final eight markers identified through GWA studies, the per-allele 

ORs ranged from 1.04 to 1.15.

Clinical scenario 1: cumulative effect of multiple genomic markers and T2D—
To estimate a reasonable upper limit to the effect size that all of these genes might have on 

T2D risk in a general population, we defined a cumulative OR under the assumption that 

each genomic marker in Table 2 provides independent information about the risk for T2D 

and that none of the effects are synergistic. Three Monte Carlo models were created. The 

first combined only the four markers, TCF7L2, CDKN2A, CDKAL1, and PPARG, with the 

highest Venice grades and (ORs = 1.39, 1.22, 1.22, and 0.86, respectively) with highest 

credible evidence (Venice grades = strong or moderate). Figure 2a shows the overlapping 

distributions for the simulated cumulative OR for individuals with (open circles, dashed 

line) and without (filled circles, solid line) T2D. Using a cumulative OR of 1.38 as a cutoff 

(the demarcation between the 12th and 13th of the 20 intervals), 7.2% of T2D and 4.5% of 

normal individuals received cumulative ORs at or above this level. This interval was chosen 

under the assumption that any screening test identifying a “high-risk” population would 

likely have a relatively low false-positive rate of approximately 5–10%. A second model 

used the first eight makers (Table 2) for which a structured review was performed (Figure 

2b). Even though four more markers were added, the impact on performance is small, with a 

detection and false-positive rate of 7.8% and 4.9%, respectively (using the same 1.38 OR as 

a cutoff). Finally, a third model used all 30 markers (Table 2) that had an OR identified 

(Figure 2c). The effect of adding 23 more markers is to spread out the two distributions, but 

little improvement in performance is seen (detection and false-positive rates of 6.3% and 

3.4%, respectively). Figure 3 shows the relevant receiver-operating characteristic curves for 

all three models. The curves are similar, with areas under the curve of 0.547, 0.551, and 

0.570, respectively. A recently published simulation study39 concluded that improvements 

in net reclassification without an increase in the AUC are unlikely to result in a clinically 

useful improvement in performance. Even though more associations between genomic 

markers and T2D are reported almost monthly, the ORs are always low, and their addition to 

an existing panel will be minimal. In addition, the assumption of independence of markers 

would be less plausible, when the number of markers grows too large.

Clinical scenario 2: association of TCF7L2 with T2D in high-risk populations—
No published meta-analyses were identified that systematically reviewed the literature 
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regarding genotyping individuals at high risk of T2D for TCF7L2, and using the results to 

predict the probability of developing T2D within 4 or 5 years. No recent studies were 

identified as part of our update. For the rs7903146 SNP, two studies (in white, northern 

European populations) were included for the TT versus CC comparison.3,40 Summary 

measures were calculated using individual studies of TCF7L2 in high-risk populations. The 

overall OR was 1.66 (95% CI: 1.22–2.27; P = 0.001) for TT versus CC. For CT versus CC, 

the OR was 1.12 (95% CI: 0.85–1.48; P = 0.4). There was no evidence of heterogeneity (I2 

= 0%) for the former, and moderate heterogeneity for the latter (I2 = 25%). However, 

evidence for heterogeneity is limited because only two studies were pooled. Neither of the 

studies reported on >500 cases.

Four studies examined the predicted risk of developing T2D using TCF7L2 in combination 

with other markers,41–44 many of which were included in the review of clinical scenario 1. 

Because of the expanded panel, they are not directly relevant, but review of these results 

might provide indirect evidence for clinical validity in this setting. Each of the studies was 

in a similar high-risk population setting, and all used nongenetic factors in estimating risk. 

The net reclassification index (NRI)45 was used to determine the improvement of risk 

classification gained by including the results of genomic panel testing in addition to 

traditional risk factors. The NRI is most informative if the reclassification is first reported 

separately for both the cases (a positive percentage indicates improved risk classification 

among individuals who developed T2D) and the controls (a negative percentage indicates 

improved risk classification among individuals who did not develop T2D). The difference of 

these (NRIcase − NRIcontrol) is the overall NRI. Overall, the data from these four studies 

provide moderate evidence of little or no improvement in reclassification of risk, even if 

TCF7L2 were the main reason for any improvement:

• In 2008, Meigs et al.43 reported a prospective cohort study of 2,377 adults in which 

255 developed T2D within 28 years. A panel of 20 SNPs (including TCF7L2) was 

used to retrospectively genotype stored samples. The case, control, and total NRI 

were 1.2%, −1.1%, and 2.1%, respectively (P = 0.17).

• In 2010, Talmud et al.42 reported a prospective cohort study of 5,535 adults in 

which 302 developed T2D within 5 years. A panel of eight SNPs (including 

TCF7L2) was run on stored samples. The case, control, and total NRI were 6.4%, 

2.6%, and 3.8%, respectively (P = 0.24).

• In 2008, Lyssenko et al.41 reported on two prospective cohorts: 16,000 from 

Sweden and 3,000 from Finland. Over the next 23 years, 2,201 developed T2D. A 

panel of 11 SNPs (including TCF7L2) was tested on stored sera. The case, control, 

and total NRI were 2.6%, −1.9%, and 4.5%, respectively (P < 0.001).

• In 2010, De Miguel-Yanes et al.44 updated the information regarding the cohort 

published in 2008.43 There were now 446 individuals with T2D, and the panel was 

increased to 40 SNPs. Only the total NRI of 1.9% was reported (P = 0.2).
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Clinical utility

A total of 79 studies were identified using our search strategy to evaluate clinical utility. 

After reviewing abstracts and full-text publications, three studies met inclusion criteria. Two 

randomized controlled trials3,9 and one prospective cohort8 reported intermediate and 

clinical outcomes for gene–intervention interaction ranging between 10 weeks and 7 years 

of follow-up. Patient populations included both those at high risk (impaired glucose 

tolerance and/or body mass index >30) as well as individuals from the general population. 

Data from these three studies were abstracted into evidence tables including genetic variant, 

population studied, outcome measured, and treatment effects stratified by genetic variant 

and intervention (Table 3).

Clinical scenario 1: cumulative effect of multiple genomic markers and T2D—
The EPIC-Potsdam study8 was a prospective case–cohort design with 773 individuals with 

T2D and 2,225 randomly selected population-based controls followed for an average of 7.1 

years (Table 3). The risk of developing T2D was associated with the TCF7L2 T allele 

(hazard ratio: 1.51) and was compared with daily consumption of whole grains stratified by 

TCF7L2 genotype. This observational study found a protective effect of whole-grain intake 

on diabetes risk exclusively applied to the CC genotype (hazard ratio relative to overall 

effect of 0.86 per 50 g/day), whereas those carrying at least one T allele showed no such 

benefit (hazard ratio relative to overall effect of 1.08 per 50 g/day).

Clinical scenario 2: association of TCF7L2 with T2D in high-risk populations—
The Diabetes Prevention Program3 was a multicenter randomized controlled trial comparing 

the effects of metformin and intensive lifestyle intervention aimed at reducing the incidence 

of T2D among obese individuals who already had impaired glucose tolerance testing results. 

Treatment with metformin was initiated at 850 mg administered orally once daily and raised 

to twice daily after the first month. The goal of the lifestyle intervention was to reduce body 

weight by 7% through a low-fat, low-carbohydrate diet with an average of 150 min of 

exercise per week. TCF7L2 genotyping was retrospectively performed on 3,549 patients 

(average age: 53.7 years and average body mass index: 34 kg/m2). The expectation was that 

in the placebo arm, the TT (at risk) population would have a higher incidence of T2D. At the 

end of an average of 3 years of follow-up, there was a 24% reduction in incident T2D in the 

metformin treatment arm and a 53% reduction in the lifestyle intervention arm as compared 

with placebo (hazard ratio: 1.81) in the at-risk (TT) population (row 2, Table 3). None of the 

interactions of genotype and intervention were significantly different from the placebo 

group.

The NUGENOB study9 was a multicenter randomized open-label trial that compared the 

benefits of two dietary interventions8 with intermediate outcomes relevant to T2D. Only the 

surrogate outcome of plasma fasting glucose is relevant to this review. Subjects ranged 

between the ages of 20 and 50 years with a body mass index of 30 kg/m2 or greater. A low-

fat diet (20–25% of energy from fat) was compared with a high-fat diet (40–45% from fat). 

The change in fasting plasma glucose was measured at baseline and at the end of a 10-week 

intervention period. The impact of the high- and low-fat diets was not associated with 

TCF7L2 genotype (row 3, Table 3).
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Recent studies have shown the effectiveness of bariatric surgery in reducing 
or reversing the negative effects of T2D—In a recent meta-analysis of 35 studies 

reporting laparoscopic adjustable gastric banding,46 weight loss over the first 2 years 

averaged 47%, whereas remission or improvement in diabetes varied from 53% to 70%. 

However, the studies were generally of low quality. Only one study was identified that 

evaluated TCF7L2 genotype among individuals undergoing bariatric surgery.47 Although 

these studies were performed in patients with T2D, the procedure would likely reduce the 

risk of developing T2D. They performed mRNA expression analysis on mRNA isolated 

from liver and found that TCF7L2 expression was unrelated to age or glycated hemoglobin 

but was associated with body mass index, depending on whether the obese patient had an 

existing diagnosis of T2D. It should be noted that TCF7L2 has a complex transcription and 

splicing pattern that varies between tissues, so analyses that do not distinguish between 

transcripts may obscure important differences.

Update on the availability and content of genomic panels for T2D—This targeted 

review addresses only those genes included on genomic profiles aimed at T2D that were 

available when the study was undertaken in mid-2010. Because it is possible that additional 

or updated panels may now exist, we repeated our search strategy in August 2011 and April 

2012. Two of the genomic panels in Table 2 have updated their panels. DecodeMe has 

added nine variants to its panel, and 23andMe has added two variants to its panel. Two new 

GWA studies were identified with new associated SNPs,25,26 none of these were associated 

with ORs >1.15. No new genomic panels for T2D risk were identified.

DISCUSSION

Quality of evidence

Analytic validity—The quality of evidence for analytic validity is inadequate (scale: 

inadequate, adequate, and convincing). For the panels/test described in Table 2, no 

publications were identified that provided relevant information on the analytic validity of 

testing for these gene variants. For many of the panels, the testing platform was not 

specified.

Clinical validity—The setting for clinical scenario 1 (Figure 1) was the general 

population, with testing of genetic variants to identify individuals at risk for T2D. The 

quality of evidence for clinical validity for clinical scenario 1 varied widely among the 27 

genes/variants identified on one or more of the T2D panels. The Venice grades ranged from 

strong to weak among the eight variants commonly found (Table 2). The strongest evidence 

was for the rs7903146 SNP in the TCF7L2 gene, with a per-allele OR of 1.39. We identified 

no information for four of the variants. Horizon scanning for relevant GWA studies results 

identified an additional eight potentially useful variants, but the per-allele ORs were all 1.15 

or smaller. In an attempt to quantify the potential for this type of testing to provide useful 

information, we created a model system under the assumption that the per-allele ORs for 

each of the reported variants provide independent information regarding the risk of 

developing T2D. Using a combination of the four most widely offered variants, the 

estimated AUC was 0.547. By adding an additional four, or including all 27 quantified 
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variants to the model, the AUC improved slightly to 0.551 and 0.570, respectively. Even if 

these test panel results are independent of traditional risk factors for T2D, they are in the 

range of AUCs considered unlikely to provide important clinically relevant improvements to 

T2D risk classification in the general population.48 Our modeling might have overestimated 

the combined effect if some markers are related (e.g., in the same biological pathway). 

Alternatively, if some markers interact to provide effect sizes that are larger than the product 

of the two, our model would underestimate the effect size. Therefore, the results of modeling 

the effect size for T2D or other genomic panels should only be considered an estimate.

The setting for clinical scenario 2 was a high-risk population (defined by obesity, impaired 

glucose tolerance, or both), with testing of a single genetic variant (the rs7903146 SNP in 

the TCF7L2 gene) to identify those individuals who will develop T2D. Two studies reported 

directly relevant data, with overall OR of 1.66 for the comparison of TT versus CC and 1.12 

for the CT versus CC comparison. These limited data are consistent with the 1.38 per-allele 

OR for this variant in the general population. Four other studies used the same TCF7L2 

variant in a genomic panel with other T2D-related variants to explore the reclassification of 

high-risk individuals and found little, if any, improvement. Overall, there is moderate 

evidence of, at most, minor improvement in risk classification using TCF7L2 genotyping in 

a population already at high risk of T2D.

Clinical utility—Two studies provided limited data on genotype-related differences in 

interventions aimed at reducing the risk of developing T2D in a general adult population 

(Table 3). Both restricted genotyping to TCF7L2 and both confirmed the higher risk 

associated with the high-risk homozygous genotype (Table 3). One of the studies examined 

the dietary intake of whole grains and found that individuals with at least one T allele did 

not benefit, whereas those without a T allele showed some reduction in risk, but the 

difference was not significant. Another report focused on the use of metformin and on 

lifestyle changes. None were found to interact with the TCF7L2 genotype. One study 

addressed a dietary intervention in the high-risk population and found no significant 

association with genotype and the change in fasting glucose. Overall, the quality of evidence 

for clinical utility in both scenarios is considered insufficient due to limited studies, limited 

interventions, and small sample sizes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GAPS IN KNOWLEDGE

• Little or no available information on the analytic validity of T2D panels, either 

in the published literature, or on the company websites. Often, it was not 

possible to even determine the testing platform or methodology being used.

• Which of the gene/variant associations identified might benefit from further 

localization of the causative variant to improve their credibility and effect size.

• Which, if any, of the gene/disease associations identified with moderate or weak 

credibility might be overestimated due to potential biases (e.g., publication 

bias).

• How multiple genomic markers for T2D should be combined and the types of 

data needed to inform these models.

• How genetic background/ethnicity would influence the OR for any particular 

variant.

• Alternative strategies for the prevention of T2D and how genomic markers 

might impact these strategies.

• Clinical trials to inform individuals with specific genotypes (e.g., TCF7L2) and 

how behavioral (i.e., diet and exercise) and/or pharmacological (i.e., metformin) 

changes effective T2D risk in the general or high-risk populations.

• How genomic markers for T2D can be incorporated into risk algorithms that 

include family history and whether genomic markers provide useful risk 

predication when family history is lacking (i.e., adoption cases).
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RESEARCH AGENDA

Laboratories performing analytic validation studies for T2D or other genomic panels 

should consider publishing their detailed results in peer-reviewed journals, as a way to 

build the evidence base for reliable testing. A consensus method should be developed to 

handle data with poor credibility and/or the existence of possible bias that could have a 

nontrivial impact on the effect size. This would allow more consistent and reliable 

modeling to occur. Further work on standardizing genotype models, summarizing/

evaluating the literature, combinations of genomic markers, and combinations of 

genomic and nongenomic markers should be continued.21,49
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Figure 1. Analytic frameworks
(a) Clinical scenario 1 shows the use of a multigene panel to estimate lifetime risk of 

developing type 2 diabetes (T2D) and improve patient outcomes. (b) Clinical scenario 2 

shows the use of TCF7L2 testing in a high-risk population to determine short-term (3–4 

year) risk of developing T2D and improve outcomes. The numbers correspond to the key 

questions contained in Table 1.
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Figure 2. Cumulative odds ratios (ORs) for 4, 8, and 30 genomic markers to predict type 2 
diabetes (T2D)
(a) The x-axis shows the cumulative OR for the four genomic markers with the most 

credible evidence (TCF7L2, CDKAL1, CDKN2A/B, and PPARG) in a simulated population 

of individuals developing T2D (dashed line with open circles) and a corresponding 

population of individuals who do not develop T2D (solid line with filled circles). Details of 

the model are described in the methods. Each circle represents the number of individuals per 

1,000 in each of the 20 intervals (equally spaced on the log scale) from cumulative ORs 

from 0.1 to 10. There is considerable overlap with the two groups, indicating poor test 

performance (false-positive rate: 4.5% and detection rate: 7.2%). (b) Includes the same 

information for the same four genomic markers along with the four next most commonly 

used markers (HHEX, SLC30A8, KCNJ11, and WFS1). Performance does not improve 

appreciably. (c) Includes all 30 genomic markers identified in the evidence review and 

results in the best, but still poor, performance. DR, detection rate; FPR, false-positive rate.
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Figure 3. A receiver-operating characteristic curve for three models of type 2 diabetes risk 
assignment based on genotyping specific sNPs
The detection rate (vertical axis) is plotted versus the false-positive rate (horizontal axis) for 

4, 8, and 30 genomic markers associated with type 2 diabetes. The dashed line indicates a 

“useless” test in which the false-positive rate and detection rate are equal. The four-marker 

model (open squares) has an area under the curve (AUC) of 0.547 and includes the strongest 

markers with the highest credibility (Table 2). The eight-marker model (open crossed 

diamonds) improved AUC to 0.551, by adding four more widely used markers. The 30-

marker model includes all markers on identified panels, along with additional markers 

identified through the examination of genome-wide association studies. The AUC increases 

to 0.570.
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Table 1

Key questions related to the analytic framework for both clinical scenarios

Clinical scenario 1: general population

1 Does the use of the T2D Multigene Panel test(s) lead to improved outcomes for the patient/consumer, or is it useful in medical or 
personal decision making? (overarching question)

2 What is known about the analytic validity of the test(s) used to identify the variations in the genes in the T2D Multigene Panel, 
including the analytic sensitivity and specificity, reproducibility, assay robustness (e.g., failure rates, resistance to changes in 
variables such as sample quality), and other factors?

3 What is the clinical validity of the T2D Multigene Panel, including clinical sensitivity and specificity and positive and negative 
predictive values?

a. What is the strength of association of the variants in these specific genes with risk for T2D (e.g., odds ratios)?

b. How well does this testing alone predict risk for T2D?

c. How well does this testing in combination with other clinical factors (e.g., family history, age, BMI/obesity, and glucose 
levels) predict risk for T2D?

d. How do other genetic and environmental factors (e.g., race/ethnicity, family history, smoking, diet, exercise level, and 
other conditions) affect the clinical validity of this test?

4 What are the issues related to the use of the T2D Multigene Panel test in the general population and its impact on patient/consumer 
outcomes?

a. What are the current management options for patients/consumers at risk for T2D based on a positive T2D Multigene Panel 
result in a medical model? How would recommendations differ from routine health messages? How would outcomes 
change based on use of this test in a direct-to-consumer model?

b. How could the results of the T2D Multigene Panel for risk of T2D in the general population impact health behaviors or 
inform decision making by patients and their health-care providers that affect outcomes?

c. In what ways could the use of the T2D Multigene Panel in the general population impact clinical outcomes (e.g., 
morbidity/mortality)?

d. What is known about other contextual issues, such as cost-effectiveness, likelihood of behavioral change, and family 
history considerations?

5 What are the potential harms associated with use of the T2D Multigene Panel (e.g., marketing direct to consumers, distress or 
stigma for a “poor prognosis” result, misinterpretation of results leading to excessive or inadequate treatment, exploitation of hyper-
vigilant people)?

Clinical scenario 2: high-risk population

1 Does the use of TCF7L2 testing lead to improved outcomes for the high-riska patient/consumer, or is it useful in medical or 
personal decision making? (overarching question)

2 What is known about the analytic validity of the test(s) used to identify the variation in the TCF7L2 gene, including the analytic 
sensitivity and specificity, reproducibility, assay robustness (e.g., failure rates, resistance to changes in variables such as sample 
quality), and other factors?

3 What is the clinical validity of TCF7L2 testing, including clinical sensitivity and specificity and positive and negative predictive 
values?

e What is the strength of association of the variant in this specific gene with short-term risk for T2D (e.g., odds ratios)?

f How well does this testing alone predict risk for T2D?

g How well does this testing in combination with other clinical factors (e.g., family history, age, BMI/obesity, and glucose 
levels) predict risk for T2D?

h How do other genetic and environmental factors (e.g., race/ethnicity, family history, smoking, diet, exercise level, and 
other conditions) affect the clinical validity of this test?

4 What are the issues related to the use of TCF7L2 testing in this high-risk population and its impact on patient/consumer outcomes?

a. What are the current management options for high-risk patients/consumers who have a positive TCF7L2 test result in the 
usual medical model? Would recommendations differ from routine health messages? How might the outcomes change in a 
direct to consumer model?

b. How could the results of TCF7L2 testing for risk of T2D in this high-risk population impact health behaviors or inform 
decision making by patients and their health-care providers that affect outcomes?

c. In what ways could the use of TCF7L2 testing in this high-risk population impact clinical outcome (e.g., morbidity/
mortality)?
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d. What is known about other contextual issues, such as cost-effectiveness, likelihood of behavioral change, and family 
history considerations?

5 What are the potential harms associated with TCF7L2 testing (e.g., marketing direct to consumers, distress or stigma for a “poor 
prognosis” result, misinterpretation of results leading to excessive or inadequate treatment, and exploitation of hypervigilant 
people)?

a
For example: overweight/obese (BMI ≥25 kg/m2) [wt (lbs)/height (in)2] × 703.0696] patients with impaired fasting glucose (IFG) or (IGT). IFG 

is defined as fasting plasma glucose 100 mg/dl (5.6 mmol/l) to 125 mg/dl (6.9 mmol/l). Impaired glucose tolerance (IGT) = 2-h plasma glucose 140 

mg/dl (7.8 mmol/l) to 199 mg/dl (11.0 mmol/l) as defined by the American Diabetes Association Standards of Medical Care in Diabetes—2012.19

BMI, body mass index; T2D, type 2 diabetes.
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